Proceedings
Innovation and Sustainability in SME Development

International Conference on
Small and Medium Enterprises Development

Bali, 14-16 June 2012

Institute for Research and Community Service
Parahyangan Catholic University
Ciumbuleuit 94, Bandung 40141
Indonesia
Email: info@sme-international.info
Proceedings
Innovation and Sustainability in SME Development

Editor:
Gandhi Pawitan
Catharina B Nawangpalupi
Carles Sitompul
Giandi Kartasasmita

Publisher:
Institute for Research and Community Service
Parahyangan Catholic University
ADVISORY COMMITTEE

Dr. Budi Husodo Bisowarno
Gandhi Pawitan, Ph.D.
Dr. I Ketut Putra Suarthana, MM

ORGANIZING COMMITTEE

Chair: Catharina Badra Nawangpalupi
Vice chair: Orpha Jane
Ni Luh Putu Agustini K.
Secretary: Ceicalia Tesavrita
Dwi Rahmanto
Treasurer: Maria Widyarini

Paper and presentation:
Carles Sitompul
Giandi Kartasasmita

Workshop and Exhibition:
Kristiana A. Damayanti
Dedy Suryadi

Sponsor and Promotion:
Aldi Surianingrat

Website and Publication:
Romy Loice

SCIENTIFIC COMMITTEE

Prof. Colin Brown (Parahyangan Catholic University, Indonesia)
Prof. Geert Duysters (TU Eindhoven, Netherlands)
Prof. H. Jaap van der Herik (Tilburg University, Netherlands)
Assoc. Prof. Donna Kelley (Babson College, USA)
Assoc. Prof. Hartanto Wijaya Wong (Aarhus University, Denmark)
Dr. Budi H. Bisowarno (Parahyangan Catholic University, Indonesia)
Dr. Carles Sitompul (Parahyangan Catholic University, Indonesia)
Dr. Catharina Badra Nawangpalupi (Parahyangan Catholic University, Indonesia)
Dr. C. Ria Budiningsih (Parahyangan Catholic University, Indonesia)
Dr. Gandhi Pawitan (Parahyangan Catholic University, Indonesia)
Dr. Orpha Jane (Parahyangan Catholic University, Indonesia)
Dr. Yanuar Nugroho (The University of Manchester, United Kingdom)
CONTENTS

A - SUSTAINABILITY IN SME DEVELOPMENT

BARRIER FACTORS AND POTENTIAL SOLUTION FOR INDONESIAN SMES (A 01)
Maya Irjayanti, Anton Mulyono Azis A 1-14

SMALL MEDIUM ENTERPRISES: ON UTILIZING E-COMMERCE BUSINESS-TO-
BUSINESS TO GO GLOBAL (A 02)
Veronica S. Moertini A 15-26

KEY SUCCESS FACTORS THAT INFLUENCE KNOWLEDGE TRANSFER
EFFECTIVENESS: A CASE STUDY OF GARMENT SENTRA IN KABUPATEN
SRAGEN (A 03)
Aries Susanti, Naniek Utami H. Mahardian Yugi H. A 27-36

BUSINESS PROCESS REENGINEERING IN MOTORCYCLE WORKSHOP X FOR
BUSINESS SUSTAINABILITY (A 04)
Arip Budiono, Romy Loice A 37-48

DEVELOPING THE PLERED’S CERAMIC CLUSTER, WEST JAVA BY
ENCOURAGING BUILDING THE MODEL HOUSE AND INTRODUCING
KAMPOENG KERAMIK (A 05)
Aknolt Kristian Pakpahan A 49-60

THE CUSTOM MADE STRATEGY OF “SATU KAYU DESAIN ENTERPRISE” IN
EFFORTING TO ACHIEVE SUSTAINABLE COMPETITIVE ADVANTAGE (A 06)
Agus Priyanto, Lilik Aslichati, Setyo Kuncoro A 61-66

SME PRODUCT’S INVESTMENT PRIORITY AND SELECTION BASED ON
LOCAL COMPETENCIES (A 07)
Sri Indrawati A 67-74

THE EFFECT OF MARKET ORIENTATION AS MEDIATOR TO STRATEGIC
PLANNING PRACTICES & PERFORMANCE RELATIONSHIP: EVIDENCE FROM
MALAYSIAN SMES (A 08)
Raduwan Idar, Yuslina Yusoff, Rosli Mahmood A 75-72

THE SMALL MEDIUM-SIZED ENTERPRISE’S CHARACTERISTIC IN BATAM:
FREE TRADE ZONE THAT ABLE TO ACQUIRE DEBT (A 09)
Bambang Hendrawan A 83-92

THE FEASIBILITY STUDY OF KEPROK SoE CITRUS FARMING AND THE
DEVELOPMENT STRATEGIES OF LOCAL CITRUS FARMING (A 10)
Chris N Namah, Dina V. Sinlae A 93-106

INNOVATIVENESS MODEL OF SMALL AND MEDIUM ENTERPRISES BASED
ON MARKET ORIENTATION AND LEARNING ORIENTATION: TESTING
MODERATING EFFECT OF BUSINESS OPERATION MODE (A 11)
Rahab

THE TECHNOLOGY, TECHNICAL SKILL, AND R&D CAPABILITY IN INCREASING PROFITABILITY ON INDONESIA TELECOMMUNICATION SERVICE COMPANIES
(A 12)
Endang Chumaidiyah

DETERMINING THE MOST EFFECTIVE PROMOTION STRATEGY FOR CLOTHING COMPANY IN BANDUNG, INDONESIA (A 13)
Yessie Fransiska, Febri Andhika, Masca Indra, Renni Rengganis

CHARACTERISTICS OF SMALL MEDIUM MANUFACTURE INDUSTRIES IN THE ERA OF ACFTA : CASE STUDY FROM WEST JAVA (A 14)
Gandhi Pawitan

CREATING A MEANINGFUL PLANNED CHANGE (A 15)
Banowati Talim

DYNAMICS OF INDONESIA’S INTERNATIONAL TRADE A VAR APPROACH (A16)
Rulyusa Pratikto

CORE COMPETENCE AND SUSTAINABLE COMPETITIVE ADVANTAGE OF SMALL SILK WEAVING INDUSTRIES (SIs) IN WAJO DISTRICT, SOUTH SULAWESI (A 17)
Palmarudi Mappigau, Hastan

SHRIMP FARMERS’ INNOVATION IN COPING WITH DISASTER (A CASE STUDY IN SIDOARJO MUD VOLCANO DISASTER TOWARD SHRIMP FARMERS’ RESPONSES) (A 18)
Achmad Room Fitrianto

ASSET ALOCATION BASED INVESTMENT STRATEGY TO IMPROVE PROFITABILITY AND SUSTAINABILITY OF SMEs (A 19)
Subiakto Soekarno, Sylviana Maya Damayanti
B – INNOVATION IN SME DEVELOPMENT

PRESERVING CULTURAL HERITAGE THROUGH CREATIVE INDUSTRY: A LESSON FROM SAUNG ANGKLUNG UDJO (B 01)
Ummu Hania, Irna Azzadinaa, Corinthias Pamatan Morgana Sianipar, Estav Huda Setyagung, Tomohisa Ishii
B 1-8

TECHNOLOGICAL INNOVATION OF "AFILUO" SOLAR-POWERED DRYER FOR NIAS COCOA FARMERS TO GET BETTER SUSTAINABLE INCOME GENERATION (B 02)
Corinthias Pamatan Morgana Sianipar, Kitri Widaretna
B 9-20

INCORPORATING SERVICE QUALITY TOOLS INTO KANSEI ENGINEERING IN SERVICES: A CASE STUDY OF INDONESIAN TOURISTS (B 03)
Markus Hartono
B 21-34

WOMEN EMPOWERMENT THROUGH CREATIVE INDUSTRY: A CASE STUDY (B 04)
Santi Setyaningsih, Rucita C.P, Ummu Hani, Ilma N. Rachmania
B 35-44

OPEN INNOVATION IMPLEMENTATION TO SUSTAIN INDONESIAN SMES (B05)
Jahja Hamdani, Christina Wirawan
B 45-56

C – SME DEVELOPMENT IN GENERAL

INFLUENCING FACTORS OF ENTREPRENEURIAL DEVELOPMENT IN INDONESIA (C 01)
Ilma Nurul Rachmania, Merlyn Rakhmaniar, Santi Setyaningsih
C 1-12

ADOPTION OF SOCIAL MEDIA NETWORKS BY INDONESIAN SME: A CASE STUDY (C 02)
Samiaji Sarosa
C 13-24

TECHNOLOGY INNOVATION ROADMAP TO INDUSTRIAL DEVELOPMENT OF RUBBER-RAW MATERIAL IN SOUTH SUMATERA (ERGONOMICS SHIP APPROACH & APPROPRIATE TECHNOLOGY POINT OF VIEW) (C 03)
Heri Setiawan
C 25-34

THE IMPACT OF SALES FORCES TRAINING PROGRAM TO EMPLOYEES BEHAVIOUR STYLES (A QUASI-EXPERIMENTAL CASE STUDY IN A MEDIUM SIZED ENTERPRISE) (C 04)
Oki Sunardi, Maria Widyarini, Jann Hidajat Tjakraatmadja
C 35-46

PATTERNS OF INDONESIAN WOMEN ENTERPRENEURSHIP (C 05)
Ummu Hani, Ilma Nurul Rachmania, Santi Setyaningsih, Rucita Cahyawati Putri
C 47-60

USING CLUSTER ANALYSIS STUDY TO EXAMINE THE SUCCESSFUL PERFORMANCE ENTREPRENEUR IN INDONESIA (C 06)
Santi Setyaningsih
C 61-76
IDENTIFICATION OF HERZBERG’S MOTIVATOR-HYGIENE FACTORS FOR SME’S WORKERS (C 07)
Ceicalia Tesavrita, Dedy Suryadi C 77-88

FAMILY BUSINESSES THAT PRODUCE COUNTERFEITS: WHAT IS STOPPING THEM FROM CREATING THEIR OWN BRAND? (C 08)
Tahsan Rahman Khan C 89-96

PRODUCT INVENTORY PREDICTIONS AT SMALL MEDIUM ENTERPRISE USING MARKET BASKET ANALYSIS APPROACH - NEURAL NETWORKS (C 09)
Agus Mansur, Triyoso Kuncoro C 97-106

WOMEN ENTREPRENEURS: MAKING A CHANGE FROM EMPLOYMENT TO SMALL AND MEDIUM BUSINESS OWNERSHIP (C 10)
Siri Roland Xavier, Syed Zamberi Ahmad, Leilanie Mohd Nor, Mohar Yusof C 107-124

THE IMPACT OF THE BUSINESS ENVIRONMENT ON THE SIZE OF THE MICRO, SMALL AND MEDIUM ENTERPRISE SECTOR: PRELIMINARY FINDINGS FROM A CROSS-COUNTRY COMPARISON (C 11)
Erick Ariel Gonzales Rocha C 125-146

AN ASSESSMENT OF MICRO, SMALL AND MEDIUM ENTERPRISES THAT UNDERWENT UP ISSI'S INTEGRATED PLANT SURVEYS FOR THE PERIOD 2006 TO 2011 (C 12)
Ian Jester M. de Vera C 147-164

THE JOINT EFFECTS OF PERSONAL AND RELATIONSHIPS CHARACTERISTICS ON MICRO-ENTREPRENEURIAL SUCCESS (C 13)
Chiayu Tu, Shih-Nan Hwang, Jen-Shyang Chen, Fang-Yu Chang C 165-174

CONCEPTUAL FRAMEWORK OF FACTORS AFFECTING SME DEVELOPMENT: MEDIATING FACTORS ON THE RELATIONSHIP OF ENTREPRENEUR TRAITS AND SME PERFORMANCE (C 14)
Ignas G. Sidik C 175-188

SUPPLY CHAIN PLANNING FOR SMALL AND MEDIUM ENTERPRISES (C 15)
Carles Sitompul C 189-194
D – CORPORATE SOCIAL RESPONSIBILITY AND MICRO FINANCING

THE MODEL OF CROWD-SOURCED MICROFINANCING TO SUPPORT SMALL AND MICRO BUSINESSES IN INDONESIA THROUGH INTERACTIVE SITE (D01)
Niko Ibrahim, Verliyantina

SOCIAL ENTREPRENEURSHIP TO DEVELOP ECOTOURISM (D 02)
Dohar Bob M. Situmorang, Isti Raafaldini Mirzanti

ASSESSING CREDIT RISK: AN APPLICATION OF DATA MINING IN A RURAL BANK (D 03)
I Gusti Ngurah Narindra Mandala, Catharina Badra Nawangpalupi, Fransiscus Rian-Pratikto

ISSUES ON BALI TOURISM DEVELOPMENT AND COMMUNITY EMPOWERMENT TO SUPPORT SUSTAINABLE TOURISM DEVELOPMENT (D 04)
Gede Kade Sutawa

POSTER PAPER

DOES FINANCIAL CONSTRAINTS REALLY CONSTRAINT FIRMS’ PERFORMANCE? THE CASE OF THE START-UP FIRMS (P 01)
Suechin Yang, Chiayu Tu

FOSTERING GLOBAL COOLABORATION FOR DEVELOPING BORN GLOBAL SME’S IN INDONESIA (P 02)
Liem Gai Sin, I Gusti Ary Suryawathy

DESIGN STUDIES TO MAPPING POTENTIAL OF YOGYAKARTA CULTURE FOR CREATIVE INDUSTRY POLICY STRATEGIES (P 03)
Harwati, Azka Yasser

THE IMPLEMENTATION GROUP OF WOMEN’S SAVINGS AND LOANS (SPP) (CASE STUDY : FROM SAMSAM VILLAGE – TABANAN – BALI) (P 04)
Anak Agung Dwi Widyani

LINE ASSEMBLY INVESTIGATIONS OF THREE WHEEL BIKE USING TIME MEASUREMENT METHOD AT PT X (P 05)
I Wayan Sukania, Iwan Susanto
Abstract

Challenges facing small and medium enterprises are different than those facing larger corporations. However, all enterprises also share the same underlying problem that is fulfilling customers' demand. Indonesia has more than 50 millions small and medium enterprises, which is larger than the number of population in some countries. In some areas, these enterprises have formed some sort of clusters based on their operations and their geographical natures. In order to develop their operational efficiency, it is imperative that they form strategic relationships within each other. We attempt to conceptually model these relationships in term of supply chains. We then formulate some mathematical models in attempt to efficiently develop the supply chain planning model for small and medium enterprises.

Keywords: optimization, supply chain planning, small and medium enterprises

1. Introduction

Small and medium enterprises (SMEs) are facing underlying problems which are basically the same as any other enterprises, that is fulfilling customers’ demands. In the context of meeting customers demands, the
concept of supply chain is then introduced for small and medium enterprises. A supply chain is defined as a group of enterprises that works together to gain sustainable advantages through the process of fulfilling customer’s demand. A supply chain typically consists of a number facilities where raw materials, semi-finished products or finished products are acquired, transformed, stored or sold and transportation links that connects those facilities. A supply chain is often seen as a network where nodes represents facilities or enterprises and arcs that represent flow of goods, information and money. A typical supply chain consisting of vendors, manufacturers, distribution centers, and customers is depicted in Figure 1.

![Figure 1. A typical supply chain network](image)

There exists an extensive studies on supply chains. A google search using the phrase “supply chain” alone produces more than 120 millions entries. Interested readers are referred to Shapiro (2001) for further understanding in supply chains. Although there exists a large number of studies in the area of supply chains, there is still a lack of investigations for the purpose of small and medium enterprises. Challenges facing small and medium enterprises are different that those facing any large enterprises. For example, the quantity of distribution centers and transportation modes are often very limited. Furthermore, capacity constraints (both production and transports) have become the most imminent characteristic that distinguish SMEs and large enterprises. This paper proposes a supply chain planning model for small and medium enterprises where capacity constraints become very evident. The paper is written based on the following structure. Section 2 explains the conceptual framework and the problem description for the supply chain planning model in small and medium enterprises. In section 3, a mathematical model is developed for the supply chain planning where capacity is constrained. Section 4 summarizes some concluding remarks and suggestions for further studies.

2. Problem description

Assume that a manufacturer has two small and medium enterprises as its supplier, which can be seen in Figure 2. Supplier 1 and 2 are two small and medium suppliers which supply raw materials or products to a manufacturer. In the context of SMEs in Indonesia, this type of relations is very common among companies whose suppliers are SMEs. As a matter of fact, a manufacturer has very often more than two suppliers,
which are small and medium in size. To simplify the problem, we assume that a manufacturer has two suppliers. The generalization of this problem is actually straightforward.

Figure 2. A two-suppliers problem

Let us assume that the manufacturer is facing a stochastic demand which is stationaire and following a normal distribution with average μ and standard deviation σ. When demand information is transferred along the supply chain members, i.e. to the suppliers, it is then necessary for both suppliers to immediately plan their production in order to supply the needs of the manufacturer. Unfortunately, these information are not always available to suppliers. In many cases, suppliers receives this information only after the manufacturer places their orders. Thus, many SMEs in Indonesia are positioning their production strategy in a make-to-order (MTO) basis. Now, we let the production capacity of Supplier 1 and Supplier 2 denoted as c_1 and c_2, where $c_1 + c_2 > \mu$, otherwise the problem will not yield any feasible solutions. It is therefore necessary for the customer to have this capacity information beforehand.

Since demands facing the customer are stochastic, the manufacturer must places some safety stocks in order to meet its demand most of the time. Furthermore, some safety stocks must be placed on suppliers too because this demand uncertainty will be transferred along the supply chain members. Safety stocks are considered as a robust tool to help the supply chain dealing with demand uncertainty. The problem is then defined as to determine the number of safety stocks placed in front of all members in the supply chain. Bear in mind that productions in suppliers are constrained by some production capacities. Graves and Willems (2000) and Sitompul et al. (2008) have investigated this problem which is called the safety stock placement problem in supply chains. Graves and Willems (2000) studied the problem for a general type of network where capacity is unlimited. Sitompul et al. (2008) has investigated the same problem for capacitated supply chains but the network is still a linear type. To elaborate the problem, we propose a formulation for the capacitated supply chain, where the type of the network is depicted in Figure 2, which is a generalization from the linear type.

When demand is stochastic following a normal distribution with average μ and standard deviation σ, the safety stock is defined as:

$$SS = z_{1-\alpha} \sqrt{NRT}$$... (1)

where $z_{1-\alpha} = 2.33$ for a 1% of stockout probability and $NRT = \text{net replenishment time}$. Sitompul et al. (2008) suggested that the number of safety stock in a capacitated enterprises must be corrected by a certain factor, that is:
\[\theta = 1 + 5.25e^{-5.25(\rho - 0.075)} \] \hspace{1cm} (2)

where \(\rho = (c - \mu)/\sigma \) and
\(c \) = capacity,
\(\mu \) = average demand,
\(\sigma \) = standard deviation demand.

Because the problem has multiple suppliers, this correction factor must be applied to all suppliers. Rearranging the problem described in Figure 2, we now have two linear type of problems. The first linear type problem consists of Supplier 1 and the customer, while the second linear problem consists of Supplier 2 and the customer (see Figure 3).

![Figure 3. A two-linear type problem](image)

The reversed triangle shows the safety stock placed in four different places. The safety stock for the customer is then the summation of safety stock from both linear type problems. Assume that both suppliers received their raw materials from an abundant supply with lead times equal to zero (immediate replenishment). The customer must also fulfill its demand immediately. In other words, the lead time guaranteed by the manufacturer equals to zero. The production lead time for the manufacturer equals to \(T \) periods and the production (or preparation) times for Supplier 1 and Supplier 2 are denoted by \(t_1 \) and \(t_2 \) respectively. The holding costs for safety stocks at the manufacturer is denoted by \(H \) and the holding costs at Supplier 1 and Supplier 2 are denoted by \(h_1 \) and \(h_2 \) respectively. The concept of guaranteed service time as suggested by Graves and Willems (2000) can be applied in the context of many SMEs. Frequently, SMEs (suppliers) are bounded to supply their manufacturer using guaranteed service times. Let \(S_1 \) and \(S_2 \) denote the guaranteed service time from Supplier 1 and Supplier 2 respectively to the manufacturer. The guaranteed service time from the manufacturer to its customers equals to zero because the demand must be fulfilled immediately. The net replenishment time an enterprise is defined as:
\[= \text{time to receive its material + production time - guaranteed service time} \]

The net replenishment time for Supplier 1 and Supplier 2 are then formulated as:
\[\tau_1 = 0 + t_1 - S_1 \] \hspace{1cm} (3)
\[\tau_2 = 0 + t_2 - S_2 \] \hspace{1cm} (4)

The net replenishment time for the manufacturer (\(R \)) for the first and second linear type problems are formulated as:
\[R_1 = S_1 + T - 0 \] \hspace{1cm} (3)
\[R_2 = S_2 + T - 0 \] \hspace{1cm} (4)
Because the problem is re-arranged into two linear type problems, it is therefore necessary to redistribute the demand to two suppliers. Assume that we use proportional redistribution, the average demand for Supplier 1 and Supplier 2 are defined respectively as:

\[
\mu_1 = \frac{c_1}{c_1 + c_2} \mu
\]

\[
\mu_2 = \frac{c_2}{c_1 + c_2} \mu
\]

These redistributions ensure that the demand are distributed proportionally according to the capacity constraints. The standard deviation of demand, however, cannot be treated equally as the average of the demand. The standard deviation are distributed according to the following equation:

\[
\sigma_1^2 + \sigma_2^2 = \sigma^2
\]

Hence, the standard deviation of demand facing Supplier 1 and 2 are defined as:

\[
\sigma_1 = \frac{\sigma}{\sqrt{2}}
\]

\[
\sigma_2 = \frac{\sigma}{\sqrt{2}}
\]

We are now ready to formulate the problem as the problem of minimizing total costs subject to some restrictions.

3. Mathematical model

The safety stock placement problem can then be seen as the problem of minimizing total costs subject to some restrictions.

Minimize total costs:

\[
z = (h_1 SS_1 + h_2 SS_2) + H (SSM_1 + SSM_2)
\]

subject to:

\[
SS_1 = \theta_1 c_1 \sigma_1 \sqrt{T_1 - S_1}
\]

\[
SS_2 = \theta_2 c_2 \sigma_2 \sqrt{T_2 - S_2}
\]

\[
SSM_1 = \theta_{11} c_1 \sigma_1 \sqrt{T_1 + T}
\]

\[
SSM_2 = \theta_{21} c_2 \sigma_2 \sqrt{T_2 + T}
\]

\[
t_1 - S_1 \geq 0
\]

\[
t_2 - S_2 \geq 0
\]

\[
S_1, S_2 \geq 0
\]

where \(\theta_{11}, \theta_{21}, \theta_{12}, \theta_{22}\) are the correction factors for Supplier 1, Supplier 2 and the manufacturer (both linear type problems) which can be calculated as in Equation (2). Equation (9) shows the total holding costs at suppliers and at the manufacturer. Equations (10) and (11) are used to define the quantity of safety stocks at Supplier 1 and Supplier 2 respectively. The safety stock at the manufacturer is defined from the two linear type problems as shown in Equations (12) and (13). Equation (14) and (15) ensures that the net replenishment time for each supplier is larger or equal to zero. The nonnegative restrictions ensures that the guaranteed service time is also larger or equal to zero. The safety stock placement problem can then be seen as the
problem to determine the guaranteed service time. These guaranteed service times ensure the supply chain meeting its customers demand through safety stock with minimum holding costs. This problem is naturally a nonlinear programming model.

4. Concluding remarks

This paper proposes a mathematical model for a supply chain planning for small and medium enterprises, in particular for the safety stock placement problems. The problem studied by Graves and Willems (2000) are extended in this paper in order to accommodate the fact that most SMEs have capacity constraints. A two suppliers problem are formulated as a non linear programming model. The implication of this model imposes that capacitated SMEs must strongly collaborate with the manufacturer in order to efficiently place their safety stock. In doing so, the manufacturer can be ensured regarding the guaranteed service time by its suppliers. Conceptually, collaborations in term of sharing information about the demand and the capacity will yield a win-win solution for all members in the supply chain. Suppliers which are small and medium enterprises and have very limited capacity can gain efficiency in term of holding stocks. In the same time, the manufacturer can fulfill its customer demands because the lead time to receives its material is more guaranteed. Further study is directed toward the evaluation of this model as well as extending the model to include the stochastic production lead times. Up to this point, we still assume that proportional redistribution is used. It is thus advisable to further investigate the optimal redistribution of demands among suppliers.

References